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1 Introduction

The giniCI package is designed for constructing composite indicators
using Gini-based weighting approaches (Ciommi et al., 2017). These methods
benchmark a sample of units in a multidimensional context by assuming that
the relative importance of each individual dimension depends solely on its
distribution across the units. From this point of view, weights are assigned
to individual indicators based on their distributional dispersion, captured by
Gini coefficients. Consequently, the obtained weighting scheme emphasizes
the differences arising from indicators that exhibit greater heterogeneity (or
greater homogeneity, in the case of reciprocal weighting) across the sample,
favoring units with the highest values in those indicators during aggregation.

The package offers a suite of functions to facilitate the development of
composite indicators to support data-driven decision-making. It includes
tools for (1) variable normalization, (2) composite index computation, and
(3) ranking comparison. The workflow begins with data standardization,
followed by indicator aggregation using weighted arithmetic or geometric
means, and finishes with rank-shift analysis to compare composite indices.
By automating these processes and integrating visualization tools, giniCI
simplifies composite index construction while enhancing interpretability and
usability in socio-economic studies. The package is particularly handy for re-
searchers and decision makers seeking a systematic, transparent, and statis-
tically grounded method for multidimensional measurement, enabling robust
cross-unit comparisons and actionable policy insights.
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2 Data Normalization

Individual indicators are often measured in different units and may have
different polarities (relationships) with the phenomenon being measured.
The normalize() function can be applied for ensuring that all variables
are transformed into a comparable scale and aligned in the same direction of
contribution to the composite index.

2.1 Method "min-max"

This is the default method that rescales each indicator x to a [0, 1] range
based on their “inferior” and “superior” values using two formulas

x̃+
i =

xi − infx
supx − infx

, or (1)

x̃−
i = 1− x̃+

i . (2)

Formula (1) is applied to indicators with positive polarity, while Formula (2)
is used for those with negative polarity. For cross-sectional data, the inferior
and superior values are respectively the minimum and maximum values of
the indicators.

If the data includes a temporal dimension (e.g., panel datasets) and a
reference time is specified by users, the superior and inferior values are re-
spectively defined as the maximum and minimum values observed at that
reference time. The purpose of selecting the reference time is to normal-
ize observations from other periods (including future data) against a chosen
baseline, enabling meaningful comparisons over time. An example of data
normalization with the method "min-max" is provided below. Let us generate
two samples:

set.seed(1)

df1 <- data.frame(X1 = rnorm(100, 0, 5),

X2 = runif(100, 1, 10),

X3 = rpois(100, 10))

set.seed(1)

df2 <- data.frame(X1 = rnorm(300, 0, 5),

X2 = runif(300, 1, 10),

X3 = rpois(300, 10),

time = rep(c(2020:2022), rep(100,3)))

Here, df1 is cross-sectional data and df2 is longitudinal data with a temporal
variable time including three factors 2020, 2021, and 2022. If the reference
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time for df2 is set to 2020, the "min-max" scaling results for two datasets
can be obtained as follows:

df1.mm <- normalize(inds = df1,

ind.pol = c("pos", "neg", "pos"))

df2.mm <- normalize(inds = df2[, 1:3],

ind.pol = c("pos", "neg", "pos"),

time = df2[, 4], ref.time = 2020)

## Warning message:

## 12 negative value(s) generated in columns(s): 1, 2, 3

As can be seen in the case of df2.mm, normalization using a fixed reference
time may result in negative scaled values. This occurs when observations in
other periods fall outside the interval formed by the reference time’s min-
imum and maximum values. When these values are generated, a warning
message will be displayed to alert users, as they can affect downstream cal-
culations (e.g., Gini-based weighting approaches that require non-negative
inputs). If the temporal variable is present but no reference time is specified,
the normalize() function will treat the data as cross-sectional.

2.2 Method goalpost

The other method for transformation is "goalpost" (Mazziotta and Pareto,
2016), which requires a reference value refx for each indicator x to facilitate
the interpretation of results. If the reference values are not provided by users,
they are automatically assigned as follows: for cross-sectional data, refx de-
faults to the indicator’s mean; and for longitudinal data, refx defaults to the
indicator’s mean at the reference time (if specified).

For each indicator, two goalposts are established as

gp minx = refx −∆, and (3)

gp maxx = refx +∆, (4)

where ∆ = (supx − infx)/2. Using a normalization range [a, b] (default:
[70, 130]), indicators with positive polarity are normalized using the formula

x̃+
i =

xi − gp minx

gp maxx − gp minx

(b− a) + a, (5)

whereas those with negative polarity are normalized using the formula

x̃−
i = a+ b− x̃+

i . (6)
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As a result, the reference value refx is mapped to the midpoint (a + b)/2 of
the normalization range. Below is the code snippet of applying "goalpost"

scaling to the datasets df1 and df2:

df1.gp <- normalize(inds = df1, method = "goalpost",

ind.pol = c("pos", "neg", "pos"))

df2.gp <- normalize(inds = df2[, 1:3], method = "goalpost",

ind.pol = c("pos", "neg", "pos"),

time = df2[, 4], ref.time = 2020)

If an indicator follows a symmetric probability distribution and its refer-
ence value is set to the mean, the normalized values will theoretically remain
in [a, b]. Otherwise, in cases of asymmetric distributions or reference value
deviation from the mean, the normalized values may extend beyond the nor-
malization range.

3 Composite Index Computation

giniCI() is the core function of the package that constructs compos-
ite indicators by aggregating multiple dimensions into a single index, using
weighting schemes derived from Gini coefficients to reflect the relative impor-
tance of indicators. Unlike traditional aggregation approaches, the function
incorporates an option for horizontal variability adjustment, ensuring the
synthetic index reflects both inter-unit inequality and intra-unit imbalance.

3.1 Weighting Methods

The function giniCI() supports three weighting methods for computing
composite indices. The default method is "equal", where all indicators are
assigned an equal weight wequal

i = 1/n with n as the number of dimensions.
Two other methods compute weights for each indicator i based on its Gini
coefficient Gi. The Gini-based weighting method ("gini") assigns weights
proportionally to the Gini coefficients using the formula

wgini
i =

Gi∑n
k=1Gk

. (7)

This approach assigns greater weights to indicators with more imbalanced
distributions. Conversely, the reciprocal Gini-based weighting method ("reci")
defines weights using the inverse of Gini coefficients, computed as

wreci
i =

1/Gi∑n
k=1 1/Gk

. (8)
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By this way, the method ensures that indicators with more homogeneous
distributions have a greater influence on the composite index.

Temporal factors can be applied to the methods "gini" and "reci".
If the data includes a temporal variable and a reference time is specified
by users, only observations at the reference time are used to compute the
weights. If time factors are not provided or provided without any reference
time, the weighting process is run on all observations.

Note: Both methods "gini" and "reci" require indicators with non-
negative values to calculate Gini coefficients. In cases negative values are
present, it is recommended to consider scaling the data with the normalize()
function before using these methods. If the Gini coefficient of an indicator is
zero (i.e., the indicator is constant), the method "gini" assigns a weight of
zero to that indicator, while the method "reci" is non-applicable.

3.2 Aggregation and Horizontal Variability Adjustment

For each observation in the dataset, the function giniCI() computes the
composite index score Cj for the j-th row rj as

Cj = f(rj;w)±Drj , (9)

where f is a function that aggregate rj using a weighting scheme w, and Drj

is the index of dispersion (variance-to-mean ratio) of rj. The weight compo-
nents in w are derived from one of three methods introduced in the previous
section ("equal", "gini", or "reci"). Whereas, the aggregation function
can be selected as either the weighted arithmetic mean (agg = "ari"), which
works for all numeric values, or the weighted geometric mean (agg = "geo"),
which requires strictly positive indicators.

The index of dispersion Drj is added or subtracted from the compos-
ite score if the option for horizontal variability adjustment is chosen (hv =

TRUE). This mechanism introduces a penalty for units based on the imbalance
among indicator values (Muro et al., 2011). The sign of the adjustment de-
pends on the relationship between the composite index and the phenomenon
being measured. The penalty is subtracted if increasing composite scores
correspond to positive variations of the phenomenon (e.g., socio-economic de-
velopments). Otherwise, the penalty is added if increasing composite scores
correspond to negative variations of the phenomenon (e.g., vulnerability or
poverty). Since the index of dispersion should be computed only for data
measured on a ratio scale, the horizontal variability adjustment option can-
not be applied to units containing negative indicator values.
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3.3 Examples

Below is an example code demonstrating the usage of giniCI() to con-
struct composite indicators from the dataset bli. This dataset includes 11
well-being indicators for 36 countries spanning the years 2014 to 2017. To
compute the adjusted Mazziotta-Pareto index (Mazziotta and Pareto, 2016),
the normalization and weighting processes need to be performed without
incorporating temporal factors:

data(bli)

bli.pol <- c("neg", "pos", "pos", "pos", "pos", "neg",

"pos", "pos", "pos", "neg", "pos")

bli.norm <- normalize(bli[, 3:13], method = "goalpost",

ind.pol = bli.pol)

bli.ampi <- giniCI(bli.norm, ci.pol = "pos")

Note that longitudinal data can be treated as cross-sectional when con-
structing composite indices, as in the case of the adjusted Mazziotta-Pareto
index. However, for longitudinal data, it is recommended to use a specific
reference time during normalization and weighting. This ensures that nor-
malization goalposts and weights remain consistent (even when future data
is added), enabling robust comparisons over time. Below is the code snippet
for computing composite indicators using the Gini-based weighted arithmetic
aggregation and the reciprocal Gini-based weighted geometric aggregation,
with 2014 as the reference year:

bli.norm.2014 <- normalize(inds = bli[, 3:13],

method = "goalpost",

ind.pol = bli.pol,

time = bli$YEAR, ref.time = 2014)

bli.gini <- giniCI(bli.norm.2014,

method = "gini", ci.pol = "pos",

time = bli$YEAR, ref.time = 2014)

bli.reci <- giniCI(bli.norm.2014,

method = "reci", agg = "geo", ci.pol = "pos",

time = bli$YEAR, ref.time = 2014)
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4 Ranking Comparison

4.1 Ranking Shift Analysis

The ranking comparison functionality in the giniCI package is designed
to evaluate shifts between a reference composite index and an alternative
composite index. The function rankComp() calculates the rankings for each
unit based on both indices, computes the shift by subtracting the alternative
rank from the reference rank, and outputs a data frame with these details. A
positive shift indicates an improvement in unit performance, while a negative
shift suggests the opposite. The comparison result between two Gini-based
composite indices in Section 3.3 can be obtained by:

ci.gini <- giniCI(bli.norm.2014, method = "gini",

ci.pol = "pos", time = bli$YEAR,

ref.time = 2014, only.ci = TRUE)

ci.reci <- giniCI(bli.norm.2014, method = "reci", agg = "geo",

ci.pol = "pos", time = bli$YEAR,

ref.time = 2014, only.ci = TRUE)

ci.comp <- rankComp(ci.gini, ci.reci,

id = bli$COUNTRY, time = bli$YEAR)

The function summary.rankComp() provides the summary method for
the output from a call to rankComp(). Besides six summary statistics for
the ranking shifts, it provides three key measures (by temporal factors if
provided):

summary(ci.comp)

## Number of ranked units:

## 2014 2015 2016 2017

## 36 36 36 36

##

## Ranking shift summary statistics:

## 2014 2015 2016 2017

## Min. -3 -4 -6 -5

## 1st Q. -1 -1 -1 -2

## Median 0 0 0 0

## Mean 0 0 0 0

## 3rd Q. 1 1 1 1

## Max. 5 4 5 4

##
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## Average shift in ranking:

## 2014 2015 2016 2017

## All units 1.333 1.278 1.111 1.611

## Top 10 1.100 1.100 1.100 1.300

## Bottom 10 1.600 1.200 0.400 1.000

##

## Percentage of equal rankings:

## 2014 2015 2016 2017

## All units 22.22 36.11 41.67 22.22

## Top 10 30.00 40.00 40.00 30.00

## Bottom 10 10.00 30.00 70.00 40.00

##

## Average shift in 10-quantile ranking:

## 2014 2015 2016 2017

## 0.2222 0.3889 0.3889 0.3889

The average shift in ranking (ASR) quantifies the mean absolute difference
between the rankings assigned by the reference and alternative indices. In
parallel, the percentage of equal rankings (PER) indicates the proportion of
units that receive identical rankings from both indices. The ASR and PER
are measured for all units and for top/bottom-ranked units based on the al-
ternative index (default: 10 units). Additionally, the average shift in quantile
rankings (ASQ) provides a quantile-based assessment of ranking differences
(default: 10-quantile), serving as an alternative to the ASR. Collectively,
these metrics offer a comprehensive overview of the discrepancies between
the two ranking systems (see Mariani et al. 2024).

4.2 Visualization Tools

The giniCI package offers three functions to generate ranking comparison
graphs from the output of rankComp. These functions return a plot object
(or a list of plot objects if temporal factors are present), which can be stored
and printed. The plots are customizable, allowing users to adjust colors,
sizes, shapes, and label displays to meet the desired results.

The function rankScatterplot() visualizes the relationship between two
ranking systems using a two-dimensional scatter plot. Each dot’s position
on the horizontal and vertical axes corresponds to a unit’s ranking according
to the reference and alternative indices. A 45-degree reference line can be
added for classifying ranking changes. Units located in the lower half-plane
indicate an improvement in performance, while those in the upper half-plane
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indicate a decline in performance. Units positioned on the reference line have
identical rankings in both indices.

rankScatterPlot(ci.comp)$'2014'
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Figure 1: Rank scatter plot for two ranking systems in 2014

The function rankShiftplot() represents shifts in ranking by displaying
each unit as a pair of vertically aligned points: the first point (default: black-
bordered circle) corresponds to the unit’s position in the reference ranking,
and the second point (default: solid red circle) corresponds to its position
in the alternative ranking. These points are connected by a line segment,
enabling users to easily identify the direction and magnitude of ranking shifts.
If the reference and alternative points for a unit overlap, it signifies that the
unit’s ranking remains unchanged.
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rankShiftPlot(ci.comp)$'2015'
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Figure 2: Rank shift plot for two ranking systems in 2015

The final function, rankRankplot(), arranges two ranking systems side
by side and uses connecting lines to visualize how the position of each unit
changes between them. Upward-sloping segments indicate an improvement in
the alternative ranking compared to the reference ranking, while downward-
sloping segments indicate a decline. The length of non-horizontal segments
represent the magnitude of ranking shifts, with longer segments highlighting
more substantial changes in position.
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rankRankPlot(ci.comp)$'2016'

Australia

Austria

Belgium

Brazil

Canada

Chile

Czechia

Denmark

Estonia

Finland

France

Germany

Greece

Hungary

Iceland

Ireland

Israel

Italy

Japan

Korea

Luxembourg

Mexico

Netherlands

New Zealand

Norway

Poland

Portugal

Russia
Slovak Republic

Slovenia

Spain

Sweden

Switzerland

Türkiye

United Kingdom

United States

Australia

Austria

Belgium

Brazil

Canada

Chile

Czechia

Denmark

Estonia

Finland
France

Germany

Greece

Hungary

Iceland
Ireland

Israel

Italy

Japan

Korea

Luxembourg

Mexico

Netherlands

New Zealand

Norway

Poland

Portugal

Russia

Slovak Republic

Slovenia

Spain

Sweden

Switzerland

Türkiye

United Kingdom
United States

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Reference ranking Altenative ranking

2016

Figure 3: Rank-rank plot for two ranking systems in 2016
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